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Abstract

The recently developed method SCARLET by Melchior et al. (2018) allows for the morphologies

and spectra of individual astronomical sources to be extracted from large data sets even when

they are partially or completely overlapping. In this work, we search for fluorescent emissions

of gas known as extended emission-line regions (EELRs), which are energized by active galactic

nuclei (AGN) at the centers of galaxies. EELRs have so far rarely been observed cleanly because

their host galaxies tend to dominate the emission, but SCARLET is designed to separate multiple

sources of emission. We develop an approach to extract EELRs from multi-band images without the

need for targeted spectroscopic measurements. Our approach uses Gaussian Process regression to

generate samples of likely EELR spectra, and then computes a likelihood-weighted model average

of each EELR’s morphology and spectrum as obtained from SCARLET. This model-based search

approach is especially useful for finding known or suspected physical processes in the growing

data volumes of future large astronomical surveys.

1. Introduction

With the development of more advanced telescopes that allow us to see deeper into space, accu-

rately and computationally efficiently distinguishing overlapping astronomical objects in images

has become increasingly important. Morphologies and spectra are basic characteristics of galaxies,

and with the massive amounts of data being gathered by modern telescopes, determining these

characteristics in the presence of overlaps is essential for large-scale astronomical studies. Much
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of today’s astronomical studies are done not on astronomical images themselves, but on catalogs

of objects detected in these images, so source extraction and separation impacts all downstream

studies.

Melchior et al. [12] have recently developed a model-based framework for source separation in

multi-band images called SCARLET. One particularly useful application of SCARLET that takes ad-

vantage of SCARLET’s model-based nature is the deblending of fluorescent emissions of gas known

as extended emission-line regions (EELRs), which are produced by active galactic nuclei (AGN)

at the centers of galaxies. AGN feedback processes, the same processes that produce EELRs, are

thought to explain several phenomena in galaxy evolution, such as the lack of massive star-forming

galaxies in the nearby universe [7]. However, the mechanisms underlying AGN are still poorly un-

derstood. Many proposed mechanisms exist, but the details as well as relative importances of these

mechanisms are unclear. Narrow-line regions (NLRs), fluorescent regions of gas that emit narrow

spectral lines, are one of the defining features of AGN. EELRs are surprisingly large NLRs, span-

ning tens of kiloparsecs.1 Due to their large extents, EELRs have been used to help understand

AGN feedback, variability over time, and obscuration by dusty tori (see Sun et al. [19] for a list

of related studies). Therefore, an important step towards a better understanding of AGN is to have

more and higher quality observations of EELRs.

Past studies have required targeted observations of EELRs that require access to the world’s

most sensitive telescopes and thus limit the number of known systems and related studies. In this

work, we develop a method for imaging EELRs in large-scale astronomical surveys without any

kind of targeted observations. By allowing for large-scale search of EELRs, we hope our method

will be able to image more EELRs and thus enable future studies to better understand AGN.

1A parsec is defined as the distance at which one astronomical unit (roughly the radius of Earth’s orbit around the
Sun) subtends an angle of one arcsecond. 1 pc≈ 3.26 light-years.
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2. Background and Related Work

2.1. Deblending

The problem of deblending is to model an image as the sum of contributions of multiple, often

overlapping astronomical sources affected by a known blurring, called a point spread function

(PSF).2 This blurring might, for example, be caused by diffraction by the telescope, and by Earth’s

atmosphere (which is what causes stars to twinkle). The goal is then to fit a model to each source

so that the resulting reconstructed image is as close to the original image as possible. Much of the

following two paragraphs is adapted from Lupton [11].

Stars are relatively easy to deblend since they can be modeled as point sources. In the case of an

image composed only of stars, the full model is

I = S+∑
r

Frδ (x− xr)∗ϕ +n (1)

where I is the observed intensity, S is the sky level, Fr is the flux of the rth star, xr is the 2D

coordinate of the rth star, δ is the Dirac delta function, ϕ is the PSF, ∗ denotes a convolution, and

n is noise. Fitting this model is a minimization problem in 3r+1 unknowns, since we need to fit S,

Fr, and xr.

Galaxies, however, are much harder. Their shapes and light intensities can be irregular, some-

times with multiple peaks (see Figure 1). In other words, their morphology is not a simple δ

function. For example, we cannot be sure whether a multi-peaked observation is made up of

multiple separate galaxies, a single blobby irregular galaxy, or an elliptical galaxy occluded by a

dust cloud. For deblending algorithms, these uncertainties translate to degeneracies. We will now

review several approaches to deblending.

SEXTRACTOR [5] was published in 1995 and designed especially for processing large amounts

of astronomical imaging data. It is achromatic, i.e. it only takes in a single-band image. Its

2To be more precise, an imaging system’s PSF is its response to a point source, as can be seen in Equation 1.
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Figure 1: A multi-peaked observation [11].

approach to deblending is to threshold an image at exponentially spaced intensity levels and search

for sets of pixels that are connected at a lower threshold but split into multiple connected regions

at a higher threshold. This approach is simple and fast. However, one downside is that it can only

associate each pixel with a single peak, which is unrealistic and can lead to larger galaxies being

incorrectly shredded into small unphysical chunks due to overlapping galaxies.

SCARLET [12], the recently developed deblending framework used in this work, models an

observed scene as a mixture of components with compact spatial support and uniform spectra

over their support. One significant advantage SCARLET has over many other approaches is that

it directly operates on multi-band images.3 This is important since color often serves as a key

discriminator between overlapping objects. In addition, while many previous approaches perform

pixel-object association one object at a time, SCARLET performs this association simultaneously.

This allows one to explore the degeneracies arising from overlapping objects.

For each component, SCARLET estimates its morphology (i.e. its spatial intensity variation) and

its spectrum. SCARLET’s approach is a generalization of non-negative matrix factorization (NMF).

Given B images (one for each band) with N pixels per image, and representing each image as a

3A multi-band image is an image consisting of observations through multiple filters, each one covering a different
range of wavelengths. For example, a regular consumer camera has red, green, and blue filters.
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flattened N-element array, SCARLET constructs a model M ∈ RB×N as a sum of K components,

M=
K

∑
k=1

Ak⊗Sk = AS (2)

where Ak ∈RB is the amplitude of component k across all bands, also known as its spectral energy

distribution (SED), and Sk ∈RN is the morphology of that component. ⊗ denotes the outer product.

The Ak form the columns of A ∈ RB×K , and the S⊤k form the rows of S ∈ RK×N . Note how,

compared to the simple model in Equation 1, this model allows for arbitrary morphologies, not

just point sources.

SCARLET maximizes the likelihood with respect to the parameters Ak and Sk under constraints.

Assuming a homoscedastic Gaussian error, the negative log-likelihood is f (A,S) = 1
2∥Y−AS∥2

F

where Y is the observed image. This is a simplified version of the negative log-likelihood mini-

mized by SCARLET.4

Unlike NMF, whose only constraint is that all entries are nonnegative, SCARLET can enforce an

arbitrary number of quite general constraints simultaneously. In particular, SCARLET maximizes

the likelihood function using a proximal gradient method, so it can enforce any constraint that

can be expressed as a proximal operator.5 For example, two such constraints on a component’s

morphology are monotonic decrease and 180◦ degree rotational symmetry, both defined with re-

spect to the component’s center. Enforcing such constraints can help resolve the aforementioned

degeneracies, causing SCARLET to “prefer” certain models over others.

Astro R-CNN [8] is another example of a recent deblending framework, this one using a deep

learning approach. The authors developed a Mask Region-based Convolutional Neural Network

4The actual negative log-likelihood minimized by SCARLET accounts for the PSF, allows for heteroscedastic errors,
and includes terms for constraints.

5The basic idea behind proximal gradient methods is to alternate between stepping in the direction of the negative
gradient and projecting onto the constrained manifold. For example, to minimize a closed smooth proper convex
function f (xxx) under a convex constraint g(xxx) with xxx ∈ Rn, the update step is

xxxit+1← proxλ itg(xxx
it−λ it∇ f (xxxit))

where λ it is the step size. g is never directly evaluated and can be non-differentiable. Instead, it is only accessed
through its proximal operator, which can be thought of as a projection.
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Figure 2: Unified AGN model [24].

(Mask R-CNN) to perform source detection, classification, and deblending. Like SCARLET, Astro

R-CNN takes in multi-band images and is able to deblend crowded images quite well. However,

since it uses Mask R-CNN to perform instance segmentation, Astro R-CNN only provides object

masks, not morphologies or spectra. That is, it assigns pixels to objects without coming up with a

model for each object, although, unlike SEXTRACTOR, a pixel can be assigned to multiple overlap-

ping objects. In addition, since it requires a large training set, Astro R-CNN is trained on simulated

images and catalogs, which can systematically differ from real images. This is an issue in our case

since EELRs are poorly understood, so we certainly cannot simulate them well. We believe this

issue essentially prohibits us from taking a deep learning approach. Instead, we employ a model-

based approach in which we can enforce physical priors instead of having the system learn from

large amounts of data.

2.2. Active Galactic Nuclei and Extended Emission-Line Regions

An EELR is a spatially extended narrow-line region, which is a fluorescent emission of gas from

a galaxy. EELRs have widely varying spatial scales and typically have high-excitation spectra.

They are found around many AGN, which are highly luminous compact regions at the centers of

galaxies fueled by accretion of matter onto a black hole. AGN have anisotropic radiation fields that
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photoionize the surrounding interstellar medium (ISM), so the morphologies of EELRs are likely

determined by the interaction of the AGN radiation with the surrounding ISM [17]. According

to unified AGN models, AGN are comprised of a central black hole, a rotating disk of material

surrounding and falling into the black hole, and jets shooting out from the poles of the disk. Thus,

the prototypical morphologies of EELRs surrounding AGN, although diverse, tend to be jet-like

and coaxial with the radio source. In addition, a dusty torus surrounds the inner parts of the AGN,

which can obscure parts of the AGN depending on the viewpoint of the observer and leads to their

diverse appearances. Unified AGN models posit that different classes of AGN are actually a single

type of object observed from different angles (see Figure 2). He et al. [9] provide observational

evidence for the unified AGN model, finding that 81% of the AGN in the MaNGA survey have

bi-conical or bi-polar narrow-line region morphology, and also finding significant evidence that

the major axis of the host galaxy disk and the AGN ionization cones tend to be orthogonal to each

other.

However, these unified models are intensely debated [3, 21]. Furthermore, EELRs can also

be produced by intrinsic properties of the ISM, meaning that EELRs do not always lie along the

radio source axis or within AGN ionization cones. In fact, some EELRs have been observed lying

almost perpendicular to the radio axis [10]. Villar-Martín et al. [20] analyzed the radio galaxy

PKS 193246 and discovered a giant EELR that extends well beyond the ionization cones of the

AGN. Their analysis suggests that, rather than being emitted by the AGN, the giant structure is

a star-forming halo associated with the debris of the merger that triggered the activity. Indeed,

emissions from star formation and from AGN both tend to produce similar spectra.

Thus, AGN and EELRs are very active areas of study. As mentioned in the introduction of this

paper, a better understanding of EELRs can provide valuable insights into galaxy evolution and

other areas of cosmology.
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2.3. EELR Imaging

Our work is similar in spirit to that of Sun et al. [19]. EELRs generally have strong [O III]6

emission lines that can be observed in broad-band images, which make these lines excellent for

studying AGN. Sun et al. develop a broad-band imaging technique that can reconstruct images

of the [O III] line, using the Subaru Hyper Suprime-Cam (HSC) Survey for broad-band images

and the Sloan Digital Sky Survey (SDSS) for spectra. Their technique uses spectra from SDSS

to carefully subtract out the galactic stellar continuum from broad-band images, thus isolating the

narrow-line emissions. This technique does not require targeted observations, and is thus able

to cover much larger samples than traditional targeted techniques. They use their technique to

image the NLRs around 300 obscured AGN, finding 8 EELRs that extend beyond 10 kpc from the

nucleus.

Although this technique already requires much less targeted data than previous work to image

EELRs, allowing it to search around hundreds rather than just dozens of AGN, it still requires

prior spectroscopic measurements. This dependency on spectroscopic measurements limits the

objects searchable by Sun et al.’s technique for two reasons. First, SDSS is less sensitive than

HSC, and Sun et al. were only able to use objects observed in both surveys. Second, spectroscopic

measurements are observationally resource intensive. Astronomical objects are first identified in

the SDSS imaging survey, and then a small fraction of these, which have to be relatively bright,

are selected to have their spectra measured by having individual fibers pointed at each object. 640

spectra can be observed at a time, with a total integration time of 45-60 minutes, depending on

observing conditions [22].

The Legacy Survey of Space and Time (LSST) will be the leading imaging survey in the near

future. It will be similarly as sensitive as HSC but cover a much wider area, greatly increasing the

available data. But since the spectroscopic coverage of LSST will be limited, there is a need for

EELR imaging techniques that do not rely on spectroscopic inputs. This is the role our method

aims to fill.
6This notation refers to the spectral line corresponding to the second ionization state of oxygen.
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GP Sampling Model Averaging

Figure 3: Summary of our inference procedure. Gaussian Process sampling is used to generate
EELR spectra (see Section 3.1), which are used by SCARLET as constraints when deblending, and
the SCARLET models are then combined using likelihood-weighted model averaging (see Section
3.2).

3. Approach

We develop a probabilistic method for automatic EELR search that does not require spectroscopic

measurements. By using SCARLET’s constraint system to represent prior information about ex-

pected spatial and spectral properties of objects (see Section 4.3 for details), we believe this ap-

proach can compensate for the lack of precise spectra. Figure 3 is a schematic of our approach.

3.1. EELR Spectrum Sampling

SDSS provides high quality measurements of both redshift and spectra. Although EELRs have

varying compositions, they all tend to have strong [O III] lines that dominate their spectra. How-

ever, the redshift z (not to be confused with the photometric band z) of the galaxy moves all the
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Figure 4: SDSS spectrum of one of the obscured AGN in our sample, and the filter response func-
tions of the five HSC bands [19]. The horizontal axis is wavelength in Å, and the vertical axis is the
normalized wavelength flux density.

lines by a factor of 1+z, so we observe them at different wavelengths. Therefore, we use Gaussian

Process (GP) regression to fit a distribution of functions which map redshift to colors, defined as

the difference between magnitudes in two bands.7 Namely, we regress g− r, g− i, g− z, r− i,

r− z, and i− z on redshift. We can use these fitted GPs to generate samples of EELR colors based

on galaxy redshift, and then use SCARLET to try fitting models in which the EELR component is

constrained to having the given set of colors. Furthermore, having multiple samples allows us to

assess the uncertainty of our estimates.

Note that we do not use GP regression to fit any colors involving the y band. This is because we

noticed that the SDSS measurements in the y band tend to be unreliable. Looking at Figure 4, we

can see that there is a “forest” of abnormally strong lines in the y band, which we believe is due

to Earth’s atmosphere rather than the AGN. Although SDSS performs processing to subtract out

the Earth’s atmosphere, it may have failed to do so cleanly in the y band due to the atmosphere’s

spatial variability. This renders the y band measurements essentially meaningless. Fortunately, our

7The reason for using colors rather than magnitudes directly is that we do not want to fit the correlation between
redshift and overall EELR brightness. Because magnitudes are defined on a log scale, we only care about the relative
differences (not ratios) between bands.
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sampling approach provides a natural solution to this issue, which is to uniformly randomly choose

y band magnitudes within a reasonable range when generating color samples. This allows us to

still utilize the y band in determining the EELR morphology despite our lack of trust in the y band

magnitudes.

3.2. Model Averaging Procedure

Model averaging is a technique that uses an ensemble of models to produce more robust predictions

than any single model by itself. It does this by taking into account each model’s ability to explain

the observation and weighting the models accordingly. In our implementation, we sample from the

GP priors to obtain a set of EELR colors. We also initialize the EELR morphology as a uniform

random pixel vector. SCARLET then optimizes the likelihood under constraints and converges to a

local maximum. We define our final estimator as

Ê(M | D) =
1
Z ∑

i
Mi ·L (D |Mi) (3)

where Mi are the optimized models and L (D | Mi) are their respective likelihoods. Z is a nor-

malization factor. This estimator weights each optimized model by its likelihood (as computed by

SCARLET), giving more weight to “good” models, i.e. those that are able to produce a close recon-

struction of the original image, and less weight to “bad” models. By combining models in this way

and essentially marginalizing over our uncertainty about the exact EELR spectra and morphologies,

we seek to robustly detect and characterize EELRs.

Furthermore, interpreting the likelihoods as reliability weights, we can compute the unbiased

model variance as

σ̂2(M | D) =
∑i wi(Mi− Ê(M | D))2

V1− (V2/V1)
(4)

where wi := L (D |Mi), V1 := ∑i wi = Z, and V2 := ∑i w2
i . This provides a pixel-wise measure of

uncertainty about our model average.

Another benefit of our randomized approach is that it should be robust to noisy redshift measure-
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ments. This is important because our goal is to image EELRs based solely on broad-band images,

and we therefore want our method to work well with photometric redshift measurements rather

than spectroscopic redshift measurements. Whereas spectroscopic redshift techniques estimate

redshift by observing the wavelengths of specific characteristic spectral lines, photometric redshift

techniques come up with much rougher estimates of redshift by observing the source emission in a

few broad-band filters of an imaging survey. Fortunately, as increasingly larger-scale astronomical

surveys allow us to photometrically observe fainter and fainter galaxies but not their spectra, pho-

tometric redshift techniques have been an active area of research and are becoming increasingly

accurate [6, 18].

4. Implementation

4.1. Data

We use HSC for broad-band images and SDSS for spectra and redshift, so our dataset consists of

objects detected in both surveys. The HSC survey is part of the Subaru Strategic Program [2] and

provides high-resolution g, r, i, z, y broad-band images from the 8.2m Subaru telescope in Hawaii.

We use the HSC S18A-wide data release [1], which covers an area of 305 deg2 at full depth in

all five bands. The HSC’s median seeing, defined as the full width at half maximum of the PSF

(smaller is better), in the i band is about 0.6". SDSS [22] uses a telescope in New Mexico and is

much wider but shallower than HSC, and has a typical seeing of 1.4" in the i band. Importantly,

SDSS also provides spectra for some of the objects detected in its imaging survey, allowing us to

fit the GPs as described in Section 3.1.

Following the procedure of Sun et al. [19], our targets are selected from four SDSS spectroscop-

ically identified obscured type 2 AGN samples—Zakamska et al. [25]; Reyes et al. [16]; Mullaney

et al. [13]; and Yuan, Strauss, and Zakamska [23]. We exclude type 1 AGN from our dataset since

their bright nuclei can completely dominate observations and thus interfere with the imaging of

EELRs (see Figure 2 for a schematic comparison of type 1 and type 2 AGN according to unified
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AGN models). Mullaney et al. target low redshift objects (z ≤ 0.3), while Zakamska et al. and

Yuan et al. primarily focus on higher redshifts (z∼ 0.3−0.7), and Reyes et al. have both.

We crossmatch this SDSS sample with the HSC S18A-wide sample, using the same target se-

lection criteria as Sun et al. and ending up with a sample of 444 observations with a host galaxy

centered in each image. Note that our sample is larger than that of Sun et al. since we use the

updated HSC S18A data release, which covers a greater area than the S16A release.

4.2. Gaussian Process Regression

The first step in our method is to generate SED samples given a redshift. To do this, we use scikit-

learn’s [15] GaussianProcessRegressor to fit a GP for each color involving the g, r, i, or z

bands. Each GP uses as its kernel the sum of a radial-basis function (RBF) kernel and a white

noise kernel. Since the RBF kernel is infinitely differentiable, it produces smooth functions. The

white noise kernel captures the noise in the data so that the GP does not overfit, and so that we

have an estimate of uncertainty at each redshift. The GPs, fit on SDSS colors and spectroscopic

redshift, are shown in Figure 5.

As a sanity check, we can see in Figure 5 that r− i increases sharply around z≈ 0.4. This aligns

with the fact that the [O III] line moves from the r band into the i band around this redshift. We

can verify this by looking at Figure 4. This AGN is at a redshift of z = 0.418, and we can see that

its [O III] line, which is the strongest line in the spectrum not including the noisy y band, is right

at the transition between the r and i bands.

Note that these GPs are actually redundant. Since we only care about the relative differences

between band magnitudes, we can set an arbitrary constant for one of the bands, e.g. g = 25. Then,

we only need three of the six colors to determine the magnitudes of the other three bands. We

decided to use g− r, r− i, and i− z since their GPs had relatively small variance.

By the definition of a GP, for a given redshift, we have a Gaussian distribution for each of these

three colors. We can therefore sample from these Gaussian distributions to produce samples of the

g, r, i, and z bands. As explained in Section 3.1, we do not have reliable measurements of the y
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Figure 5: Gaussian Processes regressing colors on redshift z (not to be confused with the z band).
The blue lines are the GP mean functions, and the light blue bands are within-1σ confidence inter-
vals.

band, so we uniformly randomly sample y band magnitudes between 18 and 26.

4.3. SCARLET Configuration

Given a multi-band (g, r, i, z, y) observation, we first use SEP [4], an implementation of SEX-

TRACTOR, to generate a catalog of objects and their coordinates within the image. This provides a

starting point for SCARLET to then determine the precise morphologies and spectra of each object.

Given their highly variable morphologies, we model the EELR as a SCARLET RandomSource

initialized with uniform random morphology, but we constrain its SED, i.e. its relative magni-

tudes in each band. We model the host galaxy as a MultiComponentSource, comprised of two

ExtendedSources which are each constrained to have monotonically decreasing flux from the

center, with one on top of the other. The rationale for modeling the host galaxy as two components

is that, in SCARLET, each component has a uniform spectrum over its spatial support, which is not

very realistic for galaxies. Most extended galaxies have a redder inner core containing older stars,

and a bluer outer part with younger stars, so two stacked components of uniform spectra better

capture this property. We model all other objects as ExtendedSources.
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(a) Scene model.

(b) Source models. Not all sources are shown here.

Figure 6: An example model fit by SCARLET using the configuration in Section 4.3.
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Figure 6 shows an example output of SCARLET using this configuration. In Figure 6b, Source

0 is the two-component host galaxy model and Source 1 is the EELR model. Sources 2 and 3 are

two other objects detected in the scene. The “rendered” models are simply the SCARLET models

convolved with the PSF. Note that these figures are from a single run of SCARLET, i.e., without

model averaging.

4.4. Model Averaging

Using the procedure described in Section 4.2, for a given observation, we generate a sample of

50 EELR spectra. For each of these samples, we deblend the observation using SCARLET and

the configuration described in Section 4.3, constraining the EELR’s SED to the sampled spectrum.

SCARLET returns a scene model as well as the model’s log-likelihood. Finally, we combine all

these models by computing the model average using Equation 3.

One implementation issue is arithmetic underflow. Often, different model samples for the same

observation have vastly different likelihoods due to some models fitting the observation very poorly.

This causes underflow when Equation 3 is applied directly. Therefore, we first drop any sam-

ples with log-likelihood less than the highest log-likelihood minus 7 (i.e., with likelihood more

than exp(7) ≈ 1097 times smaller than the highest likelihood). We then subtract the largest log-

likelihood from all the remaining log-likelihoods so that the normalized likelihoods are all between

0 and 1, making the computation of Equation 3 well-conditioned.

We compute the likelihood-weighted model average of the entire SCARLET model (i.e. the entire

scene), as well as the likelihood-weighted model average of just the EELR morphology. Figure 7b

shows an example result.
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(a) Model averages using SDSS spectra, i.e., the baseline method.

(b) Model averages using the GP method.

(c) Model averages using the GP method with noisy redshift measurement.

Figure 7: Example likelihood-weighted model averages of a full scene (middle column) and of just
the EELR morphology (right column).

5. Results

5.1. Metrics

Assuming a homoscedastic Gaussian error, a simplified version of the negative log-likelihood min-

imized by SCARLET is

f (A,S) =
1
2
∥Y−AS∥2

F (5)
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Med. MSE Med. MPIV
Baseline 5.258 0.0098

GP 5.276 0.0108
Noisy GP 5.281 0.0100

Table 1: Median performance metrics.

where A is the amplitude/SED matrix, S is the morphology matrix, and Y is the observed image.

Therefore, one performance metric we use is the mean squared L2 error (MSE), which is propor-

tional to the mean of the simplified negative log-likelihood given above.

Another metric we use is the mean pixel intensity variance (MPIV) of the EELR model. This is

done by applying Equation 4 to get the pixel-wise model variance, and then computing the mean

over all pixels. This provides a measure of uncertainty about our model average EELR morphology,

which we would generally like to minimize.

Since these metrics do not mean much by themselves, we define a baseline method for com-

parison. The baseline method is the same as our full method except it uses spectra from SDSS to

constrain the EELR spectra, so only the y band is randomly sampled. Note that SCARLET’s random

initialization of the EELR morphology (see Section 4.3) is also a source of randomization. For all

methods, we use 50 samples per observation to compute model averages. We expect the baseline

method to perform best since it has the most precise data. Therefore, our goal is to get performance

close to that of the baseline method, not to beat it. We compare the baseline method with our full

method using GPs to sample spectra, which we call the “GP method.” Table 1 gives a summary of

the results, and Figure 7 shows an example output using each method.

5.2. Spectroscopic Redshift

In this comparison, the GP method takes in spectroscopic redshifts from SDSS. A per-observation

performance comparison between the baseline method and the GP method is shown in Figure 8.

In terms of MSE, the GP method beats (i.e. has lower MSE) the baseline method in 49.8% of

the observations. In terms of MPIV, the GP method beats (i.e. has lower MPIV) the baseline

method in 42.7% of the observations. These comparative metrics as well as the median metrics in
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(a) MSE comparison. The red line is the 1:1 line. (b) MPIV comparison. The red line is the 1:1 line.

Figure 8: Comparison of performance metrics between the baseline method and the GP method.

Table 1 suggest that, as desired, using redshift rather than direct spectrum measurements seems to

negligibly degrade performance.

5.3. Noisy Redshift

In this comparison, the GP method takes in noisy redshifts to simulate the loss of precision when

using photometric rather than spectroscopic redshift measurements. In particular, for each obser-

vation, we add uniform random noise between -0.05 and 0.05 to the SDSS spectroscopic redshift.

This range of noise values roughly corresponds to the range of noise from modern photometric

redshift techniques [18]. A per-observation performance comparison between the baseline method

and the GP method with noisy redshift is shown in Figure 9. In terms of MSE, the GP method

beats the baseline method in 46.2% of the observations. In terms of MPIV, the GP method beats

the baseline method in 47.3% of the observations. These comparative metrics as well as the median

metrics in Table 1 suggest that our method is robust to noisy redshift measurements.

6. Conclusion

AGN have been theorized to play an important role in several cosmological phenomena, yet AGN

are poorly understood. EELRs emitted by AGN are a promising source of information since they

represent large-scale interactions of AGN with their host galaxies. However, as astronomical sur-

veys grow larger and see deeper, we can no longer rely on targeted observations or spectroscopic
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(a) MSE comparison. The red line is the 1:1 line. (b) MPIV comparison. The red line is the 1:1 line.

Figure 9: Comparison of performance metrics between the baseline method and the GP method
with noisy redshift.

measurements if we want to take advantage of this growing amount of data. Therefore, we have

developed a method of imaging EELRs automatically and accurately using only photometric data.

Our method takes in two pieces of data to search for an EELR: redshift and a multi-band image.

Redshift can be estimated from the broad-band image using photometric redshift techniques, so in

reality only the multi-band image is needed. We use Gaussian Process regression to fit Gaussian

distributions of EELR SED to redshift. After generating a sample from these GPs, we then use

SCARLET’s constraint system to constrain the EELR’s SED as well as other physical characteristics

of the objects in the observation. SCARLET produces a model and a likelihood for each of these

sampled spectra. We then compute the likelihood-weighted model average to produce a final,

combined model.

Our method seems to perform quite well despite its lack of precise input data, performing simi-

larly to a method which is given spectra measurements from SDSS rather than having to infer these

from redshift. Thus, we believe this method holds promise for detecting and imaging EELRs in

future large-scale surveys, enabling future studies on EELRs and AGN.

7. Future Work

After 10 years of observation, the Legacy Survey of Space and Time, currently under construction,

will provide observations over a much larger area and greater depth than HSC. This will be an
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important proving ground for our method in the future.

Although we have examined a very specific application in this work, our approach to search in

multi-band images is quite general. For the same reasons our approach is useful for EELR imag-

ing, it could potentially be useful for imaging dust lanes in galaxies, or the bars of spiral galaxies.

In both cases, our sampling approach to marginalizing over uncertain SED and morphology con-

straints could be applied.

There has also been recent work in the area of multi-output Gaussian Process modeling (e.g.,

Parra and Tobar [14]). In our case, this would amount to not only modeling correlations between

bands and redshift, but also modeling between-band correlations, and could thus produce better

samples. This may in turn increase the computational efficiency of our method by reducing the

number of samples needed to produce a good model average.
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