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Background  
Human pose estimation is an established and well-researched problem in the field of computer 
vision: given an input image containing one or more humans, detect their poses. This generally 
involves localizing specific keypoints, often the joints, on the human body; the keypoints may 
then be connected to model the position of the human body. Pose detection systems may focus 
on simply generating 2D models from 2D images, or they may use elements of 3D 
reconstruction to model the human in 3D. Furthermore, human pose estimation can be 
extended to pose tracking - analyzing motion and poses changing across time given an input 
video.  

There are myriad applications for pose estimation systems. Robots may need to be built to 
recognize and react to certain gestures. Pose detection can help security in surveillance, 
analyzing the actions of those captured on screen. Autonomous driving systems benefit from 
more precise analysis of the actions of the pedestrians around it. Those in sports fields can 
evaluate whether their form is good or dangerous for their bodies, and in dance the accuracy of 
a given dancer’s performance may be evaluated relative to a “correct” choreography.  

Challenges involved in pose estimation include many of the common challenges faced by 
computer vision systems, such as variable lighting and color or occlusion, as well as more 
specific challenges that come about when trying to model a human body. Depending on the 
person’s orientation relative to the camera, there may be occlusion of joints and body parts, 
requiring estimation from context. The system must be able to handle differences in appearance 
from person to person, due to different clothing, body types, etc. Some joints are particularly 
small and difficult to detect. Although human bodies follow the same general tree-like structure, 
there is still a high variability in how the body parts may be articulated, especially when flattened 
to a 2D image; on the other hand, there are plenty of poses that are physically impossible, and 
such predictions should somehow be filtered out of consideration.  

Motivation 
For the purposes of this project, we chose to focus on 2D, single-frame, single-person human 
pose estimation. In general, there have been two major approaches to this problem (Bulat and 
Tzimiropoulos, 2016). One strategy is to treat the location of a given joint as a continuous 



variable to be predicted, and thus use regression to determine the coordinates of these 
keypoints.  

The other common general approach is a detection-based approach, and involves overlaying 
the image with a grid and solving a classification problem for each coordinate: whether it 
contains the keypoint in question or not. A likelihood heatmap is generated for the image, and 
the location of the keypoint is set to be the location of maximum likelihood. In general, this 
approach has traditionally shown to give better results than pure regression (Sun et al., 2018). 

However, detection strategies still have their limitations. Notably, heatmaps are limited by their 
resolution, so there are inevitable quantization errors because locations cannot be estimated 
continuously. Increasing the resolution of the heatmap mitigates this error, but doing so quickly 
becomes very computationally expensive. Additionally, the standard method of converting from 
heatmap probabilities to the location of a joint is to take the point with the maximum probability, 
but this max function is not differentiable, so the whole system cannot be trained end-to-end.  

For our project, we wished to study the limitations of the detection-based approach, and 
investigate strategies that could potentially address these weaknesses. To do so, we looked to 
the regression-based approach for inspiration. By investigating this problem, we could gain a 
deeper understanding of the methodology of pose detection as well as the difficulties and 
limitations faced by existing strategies.  

Related Work 
Traditional pose estimation systems have relied upon pictorial structures or part-based models. 
In recent years, with the increasing research into convolutional neural networks (CNNs) applied 
to a variety of tasks, many human pose detection systems rely upon CNNs as well. With the 
success of DeepPose (Toshev and Szegedy, 2014), which formulated the pose estimation 
problem as a deep neural net regression problem with regards to body joints, such approaches 
gained popularity. Such systems have demonstrated strong performance that outstrips the 
performance of classical methods by a large margin.  

In general, for 2D pose estimation, detection-based approaches have shown better performance 
than regression-based alternatives. Even a very basic network can be quickly trained to achieve 
respectable accuracy on detections in a relatively short amount of time (Xiao, Wu, and Wei, 
2018).  

One attempt to improve the performance is to construct a detection-followed-by-regression CNN 
cascade (Bulat and Tzimiropoulos, 2016). This method uses the detection approach to generate 
heatmaps, and then stacks these heatmaps to run them through a regression subnetwork, 
thereby naturally encoding context and part constraints.  

Another approach uses integral regression to bridge the gap between regression and detection 
(Sun et al. 2018). After generating a heatmap for a given joint, the final joint location is 



estimated by integrating over all locations in the domain weighted by their probabilities. Such a 
simple and lightweight approach, usable with any heatmap method, was in fact shown to give 
results comparable to state-of-the-art methods. 

Design and Implementation 

Base Heatmap Generation Model 
We ran our system using on Google CoLab using a Tesla P100-PCIE-16GB GPU. 

We wished to build upon and refine an established neural network model. Initially, we attempted 
to use the Keypoint R-CNN model provided in the collection of torchvision models. This model 
was pre-trained on the COCO 2017 dataset and used a ResNet-50 backbone. It consisted of a 
region proposal network complemented by a series of alternating deconvolutional and ReLU 
layers for parts detection, as well as a convolutional layer. Testing was performed using the 
Leeds dataset (described below). After running the base system, we experimented with 
improving its base performance by adding and modifying layers to the system with the Leeds 
data. 

We ultimately felt that this particular model did not serve as a good base to work off of for our 
project. After deciding to focus upon single-pose detection, it would have been inefficient to 
adapt the torchvision model to that purpose. Multi-person detection involves the usage of region 
proposal networks to create bounding boxes that locate the subject of interest. For the 
single-person Leeds dataset, we effectively just needed the “head” of this model, which is run 
on each proposed region. Although we decided not to continue working off this model, the 
experience and intuition we gained from working with it guided our later experimentation.  

Therefore, we changed to the deconvolutional head model described by Xiao, Wu, and Wei 
(2018), which is similar to the above model, but without the network handling multi-person 
detection. ResNet, commonly used for image feature extraction, serves as the backbone. We 
have three deconvolutional layers with batch-normalization and ReLU, each with 256 filters and 
a 4x4 kernel and stride 2, then followed by a 1x1 convolutional layer to generate the heatmaps. 
The deconvolutional layers serve as upsampling steps to produce high-resolution feature maps, 
which Xiao et al. describe as crucial for good performance. This is one of the simplest structures 
that can be used to create heatmaps (1 heatmap per keypoint), and it already provides fairly 
good predictions.  

  



Here is a diagram illustrating the basic structure:  

 

Our code was adapted from pytorch-pose on GitHub (Yang). We used a pre-trained ResNet-34 
backbone along with the 3-layer non-pretrained deconvolutional head, and trained this network 
ourselves on the Leeds dataset. We used a training-validation split of 11,000 to 1,000, and used 
the Adam optimizer with a learning rate of 0.0001. As in the original deconvolution head model, 
we used a mean squared error loss function on the heatmaps, with the target heatmaps being 
Gaussians of standard deviation 1 centered at each keypoint. We trained until the validation 
loss increased, at which point we know the model is beginning to overfit. 

Our baseline heatmap-to-keypoint translation approach was to simply take the coordinate of 
maximum probability in the heatmap. Although this simple system performs fairly well, the 
limitations of this translation method, as discussed earlier, became apparent after our 
experimentation.  

Heatmap Regression Network 
Taking inspiration from the integral approach by Sun et al., our first approach to translating 
heatmaps to keypoint coordinates was to replace Sun et al.’s hard-coded soft-argmax function 
with a fully-connected neural network. We hoped that such a neural network would be able to 
learn a more complex, and better performing, mapping from heatmaps to coordinates. 

Operating with limited computing power, we decided to investigate the capabilities of a very 
simple architecture. We built a 3-layer network for each joint (2 fully-connected layers of 128 
neurons each, followed by a 2-neuron output layer) to take the heatmaps from the base model 
and output the predicted location of each actual keypoint. This way, the system might be able to 
learn patterns in uncertain heatmaps that would guide it toward finding the correct location. 



Below is a diagram of the structure of our added layers: 

 

Gaussian Mixture Model 
We attempted another approach as well. One potential issue we saw with the integral 
regression method by Sun et al. was how it dealt with multi-modal heatmaps, or with how it dealt 
with uncertain heatmaps in general. Since it performs an integral over the whole heatmap, a 
multi-modal heatmap would result in this method predicting somewhere in between the modes. 

Consider the following predicted heatmap output by the base model: 

 

Here, both knees are seen as likely candidates for the right knee keypoint. This sort of bimodal 
distribution has a tendency to arise because of the symmetric nature of the human body.  

The basic method of mapping from a heatmap to an actual location prediction is simply by 
taking the point with the maximum probability. However, this suffers from the aforementioned 
drawback of quantization, and may ignore other useful information provided by the heatmap. 
Furthermore, we believed that in such cases where there are multiple modes of high probability, 
the integral approach would perform poorly. Therefore, we hypothesized that a more tailored 
strategy of conversion, using a Gaussian mixture model (GMM), may address this weakness. 



Some benefits of this approach are that it does not require any additional training, and that it is 
general in that it can be run on top of any keypoint heatmap generator. 

The Gaussian mixture model assumes that all data points are generated from a mixture of 
Gaussian distributions with unknown parameters. If our system detects multiple candidates for a 
keypoint location, this approach would be able to distinguish them and only use the part of the 
heatmap relevant to the most likely candidate. This approach incorporates more of the heatmap 
results into the prediction, while mitigating skewing due to outliers or multiple modes.  

We select the 20 points with the highest probability from the heatmap and cluster them using a 
GMM. The GMM fits three Gaussians to this sample using expectation maximization, weighting 
each Gaussian according to its contribution. We select the Gaussian with the greatest weight, 
and take its mean to be the keypoint location. We use the Bayesian Gaussian Mixture Model 
provided by Scikit-Learn (Pedregosa et al., 2011). 

For comparison with the previous, here is a diagram illustrating this approach:  

 

Deduplication 
After building this system, we observed that when the base model is uncertain about which side 
is left and which is right, it sometimes puts both the left and right keypoints at the same location 
(i.e. both heatmaps have the same argmax). Therefore, we came up with an approach building 
off of our GMM approach that explicitly tries to prevent this scenario. The algorithm is as follows: 

1. As in our previous approach, fit a mixture of three Gaussians for each keypoint heatmap. 
2. Sort Gaussians for all keypoints by weight, in decreasing order. 
3. For each Gaussian: 

a. If we’ve already accepted a coordinate for this keypoint, continue to next 
Gaussian. 

b. If this is not a lateral keypoint, continue to next Gaussian. 
c. If weight of this Gaussian < 0.01, continue to next Gaussian. 



d. If this Gaussian’s mean is within sqrt(5) pixels of an already accepted coordinate, 
continue to next Gaussian. 

e. Accept this Gaussian’s mean as the coordinate for this keypoint. 
4. For any keypoint that still has not been assigned a coordinate, assign it the coordinate of 

the Gaussian with the greatest weight. 

In summary, our deduplication GMM approach uses the second or third fitted Gaussians as 
alternatives to the first to prevent lateral keypoints from being predicted to be at the exact same 
location. 

Dataset 
The Leeds sports dataset, combining the original and extended versions, features 12,000 pose 
annotated images, each cropped and centered around a single person, scaled so that the 
person is about 150 pixels in length (Johnson and Everingham, 2011). The images were 
gathered from Flickr using sports-related search terms such as ‘athletics,’ ‘parkour,’ and 
‘gymnastics.’ When fed into our model, the images are first resized and padded to 256x256 
pixels. Each image in the dataset has been annotated by Mechanical Turk workers with 16 joint 
locations, with right and left labeled from the point of view of the person. A joint is stored with its 
x and y location, and a binary value indicating whether or not it is visible in the image.  

Here is a sampling of images, without their keypoints: 

 

Because the majority of the images are of people performing sports activities, there is a large 
variety of highly articulated poses. Exposure to a greater range of human poses will help the 
network become more robust in analyzing new poses. However, because many of the samples 
in the dataset feature individuals wearing sports uniforms, they may be limited in the variability 
in appearance that different clothing can cause.  

A potential drawback of this dataset is its limited size and variety, especially in comparison to 
other more expansive datasets such as MPII or COCO. Naturally, a neural net will be able to 
learn more and perform better if it is trained upon a wider diversity of data. However, focusing 
on this dataset was sufficient for the scope of model capability we wished to explore.  



Results and Analysis 

Evaluation Metrics 

Quantitative 

We measured the accuracy of our system by calculating the percentage of correct keypoints 
(PCK), which is calculated by dividing the number of correctly predicted keypoints by the total 
number of keypoints. A keypoint is considered correctly detected if the predicted keypoint 
location is within a normalized threshold distance of the true location.  

For training our regression network, as well as a general performance metric, we used the mean 
squared error: the square of the Euclidean pixel distance between the predicted and the true 
keypoint locations. 

We also recorded the time required during evaluation for each of our approaches. As there is 
often a tradeoff between accurate results and the amount of time needed to reach said results, 
we wanted to see what kinds of models could achieve reasonable results in a reasonable 
timeframe.  

Qualitative 

In addition to the above, we made qualitative judgments of the successes and failures of our 
system to guide our experimentation.  

The heatmaps generated by our base network were visually examined; blue-range colors 
indicate low probability of the keypoint being located there, while warm-colors indicate high 
probability of the keypoint location. By observing the patterns of confidence for various 
keypoints, we were able to learn more about how our system made its predictions. 

By nature, the heatmaps encode more information as to how the system arrives at its final 
predictions. However, for proper end-to-end comparison, we also needed to examine the pure 
keypoint predictions. We implemented a function to display the keypoints atop the image and 
draw lines between the keypoints for a better stick-figure visualization of the body pose that is 
predicted. 

  



Baseline Model Performance 
Our baseline model, which simply takes the argmax of each heatmap, had the following 
performance on the test set:  

● PCK: 0.662 
● MSE: 33.2 
● Time per image (ms): 55.6 

For qualitative context, here are the ground truth keypoints for one example:  

 

And here are the heatmaps predicted by the simple deconvolutional head:  

 

Each keypoint location was predicted individually. Below, we highlight some example heatmap 
predictions for comparison. The ground truth location is pictured on the left, and heatmap on the 
right.  

  



Some keypoint predictions were relatively good, high confidence in the correct location: 

  

Some were poor, showing high confidence in an incorrect point (here, the left and right feet 
were mixed up): 

  

or low confidence all around: 

   

  



And some were in between, showing moderate confidence in a correct general area:  

  

We can also compare their poses directly, by drawing the predicted keypoints on the image and 
connecting them: 

 

Even the baseline model already gives us fairly strong performance. With this particular 
example, the clearest apparent error it makes is switching the left and right ankles.  

Heatmap Regression Network Performance 
● PCK: 0.075 
● MSE: 274 
● Time per image (ms): 65.1 

Unfortunately, we were not able to find a well-performing fully-connected architecture. All 
architectures we tested, varying the number of layers and neurons per layer, performed 
significantly worse than the max method. Training the network for more epochs did not appear 
to help the performance, as it appeared to quickly get stuck at a poor local minimum.  

We attempted both to freeze the weights of the heatmap detection network, and to allow them to 
be modified in a unified end-to-end training process. We found that keeping the original 



heatmap frozen gave moderately better results. However, this may simply be because the 
added regression network was performing so poorly. 

  

Note that some of the keypoints are not even predicted within the image.  

Due to the nature of neural networks, it is difficult to analyze where they went wrong. We 
hypothesize that this system failed because of the difficulty of learning and preserving spatial 
context through linear, fully-connected layers. This, for example, is why most networks working 
with images utilize convolutional layers, but a strictly convolutional layer approach would only 
give us another 2D representation, not a coordinate vector like we desire. Further investigation 
would be necessary to determine a more sophisticated network architecture. 

Gaussian Mixture Model Performance 
● PCK: 0.645 
● MSE: 30.4 
● Time per image (ms): 463 

In order to qualitatively look at the performance of our GMMs, we visualize the generated 
clusters on top of the heatmap. Here are two examples, the first for the right knee, the second 
for the left ankle.  

  



Our Gaussian mixture model approaches gave slightly better MSE than the max approach, 
presumably due to taking into account more of the heatmap and overcoming the quantization 
issue. However, it is apparent that for many images, the simple intuitive method of finding the 
maximum probability is sufficient for prediction; it is likely that the GMM process often ends up 
selecting the approximate overall maximum anyways. As expected, the process of clustering 
and fitting the model also adds a significant amount of computational time during evaluation, as 
it is a more complex operation than taking the maximum. 

Deduplicated GMM 
● PCK: 0.638 
● MSE: 31.3 
● Time per image (ms): 443 

The deduplicated GMM approach did perform better on certain problematic images. In 
particular, it can disambiguate left and right keypoints when these keypoints’ heatmaps have the 
same argmax, as we had hypothesized. In the example below, the max approach predicts the 
left and right ankles to be at the same location, whereas the deduplicated GMM approach gives 
a more accurate prediction of the locations of both ankles. 

 

Performance Summary 
We summarize accuracy (PCK), loss (MSE), and time elapsed per image for our different 
approaches of heatmap-to-location translation in the following table: 

  



 

 PCK MSE Time/Image (ms) 

Max 0.662 33.2 55.6 

FC 0.075 274 65.1 

GMM 0.645 30.4 463 

Dedup GMM 0.638 31.3 443 

 

Occlusion Experiments 
We used multiple approaches to analyze the performance of our systems when faced with 
occlusion, a common difficulty in pose estimation. Our occlusion experiments were meant 
specifically to test the performance of our models under uncertainty. 

In the first approach, we implemented a random erasing transformation throughout the entire 
dataset. This transformation created random sized rectangles that covered 2% to 40% of the 
image. The coordinates, size and aspect ratio were chosen randomly for each image. The pixels 
that were part of the randomly generated rectangle were zeroed out. These emulated what 
occluding objects could look like in real life.  

Here is an example occlusion. On the left is the ground truth; the right leg is now hidden behind 
a zeroed-out section of the image. On the right is the prediction generated by our GMM model 
(without deduplication; notice that overlap of predicted location for the knees and feet).  

 

  



We applied the transformation to the dataset and compared the evaluation metrics (accuracy, 
loss) across the four approaches: 

  PCK MSE Time/Image (ms) 

Max 0.416 116.4 54.1 

FC 0.027 330.7 67.9 

GMM 0.406 95.8 221.5 

Dedup GMM 0.372 106.6 244.7 

 

The max, GMM, and dedup GMM approaches all demonstrate similar performance. However, 
note that the two GMM approaches show a lower PCK but a lower MSE as well. This suggests 
that although the GMM methods may have slightly fewer predictions within the threshold of the 
truth, their predictions in general are closer to the truth, i.e. they are more precise. This makes 
intuitive sense, because one goal of our GMM strategies was to produce more precise 
predictions by overcoming quantization error and incorporating more of the heatmap information 
into the coordinate translation. 

After implementing random occlusions, we were curious to test the performance of our models 
under occlusion of different parts of the human pose. We applied a targeted occlusion 
transformation, where we targeted either the upper body or the lower body to be zeroed out. 
(“Upper PCK” refers to PCK when the upper half is occluded, etc.)  

 

  Upper PCK Lower PCK Upper MSE Lower MSE 

Max 0.18 0.30 246.0 184.8 

FC 0.05 0.02 1196.0 418.3 

GMM 0.17 0.33 207.2 161.2 

Dedup GMM 0.16 0.32 205.0 160.1 
 

Overall, the systems show significantly lower loss and higher accuracy when the lower half is 
occluded, suggesting (as expected) that the upper part of the human is more important to 
correctly determining the pose. 



As we had hypothesized, the GMM approaches tend to perform better than the max approach 
under uncertainty, because it draws upon more of the data encoded in the heatmap. However, 
this improvement is quite minor and may not warrant the extra evaluation time needed. 

Conclusions and Further Work 
We gained valuable insight from each of our experiments. A pure fully-connected neural 
network approach to heatmap-to-keypoint translation seems unlikely to perform better than 
tailored problem-specific approaches. The spatial aspect of the problem should somehow be 
encoded in the model. 

GMMs can overcome the quantization issue of the max approach by using more of the heatmap 
than just the max, while performing well under uncertainty by only focusing on relevant parts of 
the heatmap. The former was demonstrated by their better MSE performance on our original 
test set, and the latter was demonstrated by their better performance on our occluded test set. 

Furthermore, using deduplicated GMMs can reduce pose detection errors in which two 
keypoints are predicted to be at the exact same location. However, since this only affects a very 
specific subset of images, the deduplicated GMM approach did not perform significantly 
different from the original GMM approach on the test set as a whole. 

As mentioned previously, the Leeds sports dataset is somewhat limited in its scope. It would be 
worth evaluating the performance of our systems after training upon more diverse and 
expansive data, and see what other situations are handled well or poorly. Such an exploration 
would likely grant more inspiration as to other ways to improve the system. For example, the 
deduplication rule we implemented was in direct response to an observation we had after 
examining our predictions; there may be other such guidelines we can impose or encode into a 
network to support the core prediction model.  

There are pose datasets that take advantage of more keypoints on the human body; this 
information may improve performance if leveraged correctly. Our pose estimation approach only 
looks at joints on the human body, but perhaps if used in conjunction with a segmentation 
system or some other model that can examine the limbs on the human body as well, then that 
could improve performance. 

Our current systems individually, independently predict the location of each keypoint; one 
entirely separate heatmap is created per joint. However, it is possible that letting information be 
shared between the different keypoint detections may allow for better results given increased 
contextual information. This, of course, requires a more complex model to be used.  

Our findings suggest that a Gaussian mixture model approach may be useful in generating 
more realistic pose estimations that, for example, try not to predict two different keypoints to be 
at the same location. One potential direction for future study would be a hybrid of the 
deduplicating GMM approach and either the max approach or the integral approach. For 



example, one could use our deduplicating GMM to propose a region of interest for each joint, 
and then find the argmax or the integral on these regions only rather than the whole heatmap. 

Our heatmap regression network performed poorly, but we still feel that there is potential for a 
neural network to perform well with this task. After all, the general trend in recent years has 
been away from part-based models and toward increased neural network usage. Given more 
time and computing power, as well as some deeper insight as to the capabilities and 
characteristics of neural nets, a network architecture that is better at learning for this particular 
task could likely be developed.  
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Links 
Dataset:  

https://sam.johnson.io/research/lsp.html 

https://sam.johnson.io/research/lspet.html  

DeconvHead implementation: 

https://github.com/bearpaw/pytorch-pose 

https://sam.johnson.io/research/lsp.html
https://sam.johnson.io/research/lspet.html
https://github.com/bearpaw/pytorch-pose

