
1

Solace: A Persistent, Performant Localization and
Mapping Technique for Controlling Exploratory

Autonomous Vehicles
Charles Zhao and Grey Golla

Abstract—Currently, methods exist for path planning
within known areas, as well as for mapping out new areas.
One algorithm for localization within known areas is Adap-
tive Monte Carlo Localization (AMCL), and one algorithm
for mapping out new areas is Gmapping. However, maps
created by Gmapping are not persistent, i.e., one cannot
build upon a map previously generated by Gmapping, and
must instead start creating a new map from scratch. In
this paper, we propose a method for building persistent
Gmapping maps for path planning within both known
and unknown areas by combining Gmapping and AMCL.
To implement our method, we built and programmed a
1/8th scale R/C car to drive autonomously to a given
goal coordinate, determining the optimal path to the goal
using its internal map, or mapping out unknown areas
until a path was found to the goal. The car can thus find
paths to goals in both known and unknown areas, while
simultaneously constructing an updated map that can be
used for finding future goals.

I. BACKGROUND

Several companies including Google, Mercedes
Benz, and Audi have begun to develop their own
autonomous or semi-autonomous vehicles [7]. Of
these, Google is perhaps the most well-known for
its autonomous vehicles. Autonomous vehicles have
immense potential to save lives and time. As shown
by Google’s track record, it is much less likely for a
devoted computer system to malfunction than for an
easily distracted human. A study by the Eno Center
for Transportation predicts that if just 10% of all
cars in the U.S. were self-driving, about 211,000
accidents would be prevented, around 1,100 lives
would be saved, and related costs would be reduced
by about $38 billion per year [9]. Additionally, given
computers precision, autonomous vehicles would
not only be able to drive faster, but also closer
together, thus reducing congestion and also mak-
ing travel more environmentally friendly as people
spend less time in the car.

One efficient simultaneous localization and map-
ping algorithm is Gmapping. Current implementa-

tions of Gmapping must start from scratch on every
run because they cannot keep a persistent map, i.e.
they cannot localize the car within a given map. Our
goal is to solve this problem by building on top of
Gmapping.

Fig. 1: A photo of Solace, with the various hardware
components visible.

II. METHODOLOGY

We mounted several devices on a 1/8th scale
car. These include an Nvidia Jetson TX1 “su-
percomputer,” a Vedder Electronic Speed Con-
troller (VESC), a Hokuyo UST10-LX 2D Laser
Rangefinder, a ZED 3D Stereo Camera, and a
Sparkfun Razor 9-DOF IMU. The Nvidia Jetson
TX1, a low-power ARM computer combined with
an Nvidia graphics card, runs our navigation and
environment processing code on top of the Robot
Operating System (ROS) Kinetic and Ubuntu 14.04.
The VESC controls the motor while also providing
odometry data. The ZED stereo camera provides a
3D point cloud of the space in front of the vehicle,

2

Stereo Lidar IMU VESC Odom Gamepad

UKF

Safety Gmapping AMCL

Commander Global Planner

Local Planner

Physical Control

VESC

Fig. 2: Solace ROS software architecture. Ellipses represent inputs, rectangles represent software nodes,
and diamonds represent outputs.

with a maximum range of 20m and a 110◦ field
of view. The 2D Lidar provides a 270◦ scan of
depth information, with a maximum range of 30m,
and returning 1081 measurements per rotation (4
measurements per degree) and rotating at 40Hz.
The IMU reports physical movement of the car in
3D space, including linear and angular acceleration,
velocity, and position.

We programmed the car to first localize itself
within an internal map. Given a goal coordinate,
the car then tries to find the shortest path to the
goal using its internal map. If its map is incomplete
between the car and the goal, the car autonomously
explores unknown areas, continuously updating its
internal map until the goal coordinate is reached.
Planning is naturally split into two separate tasks: lo-
cal planning and global planning. The local planner
avoids static and dynamic objects, while the global
planner determines an overall path for the car to

follow within its internal map.
In the following sections, we describe in detail

localization, mapping, global path planning, local
path planning, and our technique of combining
known and unknown path planning. See Figure 2
for the full software architecture.

A. Localization
In order to navigate the environment, the car must

first be able to determine where in the environment
it is, and determine how it is moving in the environ-
ment. The simplest way that the movement of the
car can be determined is odometry. Odometry uses
internal measurements of the robots state (proprio-
ceptive data) to estimate the change in its position
over time. We use our brushless motor speed con-
troller as well as a nine degree of freedom Inertial
Measuremnet Unit for our odometry. Because both
of these sensors are expected to have a random error

3

in their measurements, we combine them together
using an Unscented Kalman Filter (UKF). A UKF
is an extension of a basic Kalman Filter that handles
nonlinear systems more effectively. Kalman filters
estimate the actual value of a variable from multiple
error-prone measurements of that variable. To do
this, it models each measurement as a gaussian (or
normal) distribution of possible values of the state.
By finding the intersection of each distribution, it
finds the most likely value of the data. It also keeps
track of the estimated change in state variable over
time by the same method, and transforms its old
gaussian state estimate into another distribution that
is also taken into account.

Unfortunately, even with these statistical tricks,
odometry data is expected to drift over time, which
means that its error (the difference between the
robots expected position and orientation and its
actual location in the world) is expected to increase
without bound. To counteract this, we must use
exterioceptive data to provide a correction. Exterio-
ceptive data is taken in from the outside world, such
as Lidar scan data.

We use Adaptive Monte Carlo Localization
(AMCL) to localize the car within a given map,
i.e., to determine the robots pose relative to the
map. AMCL uses a particle filter that combines
proprioceptive data from the unscented Kalman filter
described above with exteroceptive data from the
Lidar. The particle filter keeps track of a number of
candidate poses, which are each possible poses of
the car assigned a certain probability.

Whenever odometry data is received, all the can-
didate poses are updated accordingly. For exam-
ple, if the odometry data states that the car has
moved forward one meter, all the candidates poses
will move forward one meter. Whenever external
observations are received, which happens less fre-
quently due to the greater computational resources
required, the data from odometry is corroborated
and adjusted accordingly by matching current laser
scans to previous laser scans (a technique called
laser scan matching, see Figure 4), and particles
are either added to or removed from the filter. If
the car is less confident about its pose, there will
be a greater number of particles that are also more
widespread, and if the car is more confident about its
pose, there will be a smaller number of particles that
are clumped tightly together. In our configuration,
AMCL uses at most 2000 particles (when very lost),

and at least 500 particles (when confident). See
Figure 3.

Fig. 3: An example of AMCL in action. Each of
the red arrows represents a candidate pose. This
particular robot is quite lost, as there are many
candidate poses and they are quite widespread. [12]

B. Mapping

For mapping, we use a simultaneous localization
and mapping (SLAM) algorithm called Gmapping
[2]. This algorithm uses a Rao-Blackwellized parti-
cle filter, with each possible position and trajectory
of the car represented as a particle [6]. Gmapping
solves the problem of reducing the number of par-
ticles to more efficiently and accurately predict the
car’s actual position and trajectory. This algorithm
improves on other kinds of algorithms that only use
odometry data by also considering the car’s current
observations, using Lidar data to perform laser scan
matching (see Figure 4).

Rao-Blackwellization takes advantage of the fact
that the probability of the car having a certain
position and trajectory is equal to the probability
of the car having that trajectory times the prob-
ability of the car having that position given that
trajectory. Formally, if xk, mk, zk, and uk are the
car’s trajectory, map, observations, and odometry
measurements, respectively, at time k, then

p(x1:t,m|z1:t, u1:t−1) =

p(x1:t|z1:t, u1:t−1) · p(m|x1:t, z1:t).

4

Fig. 4: An example of laser scan matching. [4]

Since the car’s position is strongly dependent on
the car’s trajectory, Rao-Blackwellization results in
greater efficiency [6]. Once the car has localized it-
self using this algorithm, i.e. determined its position
and trajectory, Gmapping will constantly provide
updated maps to the navigation stack.

Gmapping returns occupancy grids. In our config-
uration, these occupancy grids have a resolution of
5cm, and cells that have lower than a 19.6% chance
of being occupied are marked as free, cells that have
greater than a 65% chance of being occupied are
marked as occupied, and all other cells are marked
as unknown. See Figure 5.

C. Global Path Planner
The global path planner’s goal is to find a “rough”

path from the car’s initial point to it’s goal position.
The global planner finds a path through the current
world map that the car has already generated and
localized itself within. To find a path, we use the
Rapidly Exploring Random Trees (RRT*) algorithm.
This algorithm randomly generates a tree, where
each branch is a valid movement of the car. The tree
growth is biased toward the goal, and branches are

Fig. 5: A map our car generated with Gmapping.
Black cells are occupied, dark areas are unknown,
light areas are free, and colored dots are the live
view of the Lidar at the point the screenshot was
taken.

removed from the tree if they violate any constraints
we put on the movement of the car (for example,
going through a wall or turning too quickly). The
final path is created as soon as a branch of the
tree touches the goal position. See Figure 6 for
an example of RRT* navigation through a simple
environment.

Fig. 6: An example of RRT* finding a path from
the blue dot to the red dot. [10]

D. Local Path Planner
The local path planner ensures that the car does

not hit obstacles not in the car’s known map, such
as obstacles smaller than the global map’s resolu-
tion (5cm), and dynamic obstacles such as people

5

walking around. The local path planner generates
a 6m x 6m costmap centered around the car, with
a resolution of 1cm. For determining a local path,
we use a technique called potential fields, where we
treat the car as a positively charged particle and then
treat each of the points returned by the Lidar as
another positively charged particle. This causes the
car to stay away from obstacles and to take the path
of least resistance, reacting especially strongly to
obstacles that are nearby. See Figure 7.

Fig. 7: A visualization of potential fields. The arrows
indicate the direction of the gradient, and their
point of convergence at the upper right is the goal
coordinate. The red circle and line are obstacles. The
green line represents the robot’s planned path. The
blue contour lines are lines of equal potential. [1]

In our implementation of potential fields, we
do not simulate physical potential fields exactly,
and only use the analogy of electrostatic poten-
tials to make the explanation easier. For example,
Coulomb’s Law states that the electrostatic force
between two point charges falls off as 1/r2, where
r is the distance between the particles. However, we
have the force fall of as 1/r1.8. This has the effect
of making far-away points have a more noticeable
effect on the car’s path, rather than having only very
close obstacles have a significant effect.

To cause the car to tend to move in a certain di-
rection, we create a constant large positively charged
particle accordingly. For example, to cause the car to
tend to move forward, we create a large positively
charged particle behind the car. The local planner
uses the A* shortest path algorithm to calculate
a local path within the 6m x 6m costmap, which
decides the placement of this large charged particle.

Since the car may get stuck if it reaches an
equilibrium in the potential fields, especially since
the car is not holonomic, we also have a recovery
behavior that removes the constant charged particle
if the car has not moved for 3 seconds.

E. Combining Known and Unknown Area Path
Planning

AMCL is able to localize the car within known
maps, and thus allows the global path planner to
plan a path through known areas. Gmapping is able
to create new maps and localize the car within these
new maps, thus allowing the global path planner to
plan a path through new areas. To combine these two
algorithms, we implement a method of stitching new
maps together. This allows us to always use AMCL
for localization and to use Gmapping to update the
known map.

The car must always start in a known area, and
Gmapping is always running, even when the car
is not lost. This is necessary because Gmapping is
only able to construct completely new maps and not
build upon previously made maps, so this causes
the map generated by Gmapping to at least partially
overlap with the known map. For stitching, we use
an automatic stitching program called OpenPano
[11]. Due to the overlap between the map created
by Gmapping and the known map, OpenPano can
find matching key points in both maps and therefore
stitch them together.

Due to the imperfect nature of our hardware, and
any hardware for that matter, the maps generated by
Gmapping are quite noisy. For example, there are
tiny obstacles where there should not be anything,
which could be due to someone walking by at the
time of the mapping, and there are many small gaps
in the obstacles, such as in walls. This noise made
OpenPano unable to stitch maps together. To filter
out most of this noise, we use OpenCV to first
apply a Gaussian blur with a kernel size of 21 x
21, and then perform Canny edge detection with
a minimum threshold of 10, a maximum threshold
of 115, and an aperture size of 3 [8]. The large
Gaussian blur along with Canny’s high maximum
threshold removes small “phantom” obstacles, while
Canny’s very low minimum threshold patches small
gaps in obstacles. See Figure 8.

Since stitching requires significant computational
resources, we only want to perform stitching when

6

(a) An unaltered map generated by Gmapping.

(b) The same map after applying a Gaussian blur and Canny edge
detection.

Fig. 8: The before and after images from our
smoothing method described in Section II-E.

the car is mapping out new areas. To determine
when the car is lost, i.e. in a new area, we use the
number of particles in AMCL’s particle filter. We
decide that the car is lost if AMCL has kept track
of more than 1500 particles for more than 3 seconds.
(See Section II-A for details about AMCL’s particle
filter.)

Our last optimization for mapping involves con-
trolling the car’s speed. Gmapping publishes a
topic called entropy, which is an “estimate of the
entropy of the distribution over the robot’s pose
(a higher value indicates greater uncertainty)” [5].
Therefore, we have the car’s speed be proportional
to 1/entropy so that the car drives more slowly
when Gmapping is less certain of the car’s pose.

III. RESULTS

We found that odometry was extremely unreli-
able, although the unscented Kalman filter improved
odometry dramatically. The Lidar, as expected, was

much more reliable and precise. We found the ZED
stereo camera to be less useful than the Lidar, as
we only considered 2D space, so we did not need
all the data that the ZED reported. Additionally, the
ZED requires more computational power than the
Jetson could provide in order to update frequently
enough to be useful. Finally, the ZED driver had a
serious issue that made it mostly incompatible with
the rest of our software stack.

By combining odometry with laser scan matching,
AMCL and Gmapping both worked quite well in lo-
calizing the car. Gmapping’s probabilistic approach
to occupancy and position made it much more
effective at localizing the car, but AMCL was still
able to do reasonably well.

We were able to successfully implement a local
planner using potential fields and a global planner
using the ROS navigation stack. We were also able
to map out new areas autonomously by combining
Gmapping and potential fields. However, we were
unable to perform map stitching successfully, as
OpenPano was not able to find matching key points.
We believe this is due to unfiltered noise produced
by Gmapping, as well as distortions in these maps
that cause maps to not align perfectly. For example,
in Figure 5, the right angles are not exactly 90◦.

IV. CONCLUSIONS

Although we were not able to get map stitching
to work, we believe it is definitely possible with
improved smoothing and stitching algorithms. For
example, a better method of smoothing the maps
could be to use a probabilistic Hough line transform
to only extract lines longer than a certain length. As
for stitching, a more complex but informed approach
could be to incorporate information about the car’s
last position and orientation when determining how
to stitch maps together.

If our method is improved upon and implemented
on a larger scale, we believe it could have very
useful practical applications in disaster relief in
the future, as well as any other task that requires
mapping out areas.

V. ACKNOWLEDGEMENTS

We would like to thank our research lab directors,
Dr. Shane Torbert and Dr. Peter Gabor, for guiding
us through our research. We would also like to thank
MIT Beaver Works for introducing us to ROS and

7

autonomous vehicles, as well as Winter Guerra for
assisting us with the potential fields code.

REFERENCES

[1] Calerga. (n.d.). Potential Field [Digital
image]. Retrieved June 10, 2017, from
https://www.calerga.com/products/Sysquake/robotnav.html

[2] Chrysanthakopoulos, G., & Shani, G. (2010). Augmenting
appearance-based localization and navigation using belief up-
date. Retrieved October 14, 2016, from ACM Digital Library.

[3] Davies, A. (2016, February 29). Google’s Self-Driving
Car Caused Its First Crash. Retrieved April 24, 2016,
from http://www.wired.com/2016/02/googles-self-driving-car-
may-caused-first-crash/

[4] [Feature based map and corrected robot pose using laser
scan data as input.]. (n.d.). Retrieved February 1, 2017, from
https://rvlab.icg.tugraz.at/

[5] Gerkey, B. (n.d.). Gmapping (Version Kinetic) [Program
documentation]. Retrieved June 11, 2017, from
http://wiki.ros.org/gmapping?distro=kinetic

[6] Grisetti, Giorgio, Cyrill Stachniss, and Wolfram Burgard. Im-
proved Techniques for Grid Mapping with Rao-Blackwellized
Particle Filters. N.p.: n.p., n.d. PDF.

[7] Kennedy, B. (2014, July 25). Top 5 Companies For
Autonomous Vehicle Technology. Retrieved April 24,
2016, from https://finance.yahoo.com/news/top-5-companies-
autonomous-vehicle-143652992.html

[8] OpenCV (Version 2.4) [Computer software]. (n.d.). Retrieved
June 11, 2017, from http://opencv.org/

[9] Preparing a Nation for Autonomous Vehicles (Rep.).
(n.d.). Retrieved April 24, 2016, from Eno Center for
Transportation website: https://www.enotrans.org/wp-
content/uploads/2015/09/AV-paper.pdf

[10] RRT [Digital image]. (n.d.). Retrieved June 12, 2017, from
https://lightlordhippo.files.wordpress.com/2012/11/rrt.jpg

[11] Wu, Y. (n.d.). OpenPano [Computer software]. Retrieved May
23, 2017, from https://github.com/ppwwyyxx/OpenPano

[12] YTU BM Robotics. (2014, August 5). [ROS
AMCL localization]. Retrieved June 10, 2017, from
https://www.youtube.com/watch?v=9J2oc hvON0

